skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jordan, Michelle"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study examines the relationship between epistemic curiosity (EC) and perceived uncertainty, which is posited to form an inverted U-shape, in the context of uncertainty-driven science learning (UDSL). Using path analysis, survey data from 181 middle school students collected at multiple timepoints across a three-week photosynthesis unit designed to facilitate UDSL were analyzed. Results show that the inverted U-shaped relationship between EC and uncertainty does not consistently hold over time. Instead, prior uncertainty negatively affects this relationship unless mediated by EC or sustained uncertainty in subsequent activities. At the trait level, the study highlights the mediating role of epistemic orientation toward uncertainty in fostering trait EC in UDSL. The findings underscore the importance of supporting students' productive uncertainty navigation and signify the positive impacts of UDSL in fostering EC. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  2. Free, publicly-accessible full text available June 8, 2026
  3. Students’ Dispositions toward Scientific Uncertainty Navigation (DSUN) can play a pivotal role in impacting student learning achievement. However, understanding of the underlying mechanism of DSUN influencing learning achievement is limited. Drawing from related research, this study investigates the roles of epistemic curiosity and learning engagement in mediating the relationship between DSUN and learning achievement. A survey study design was employed, involving 1,137 middle school students who participated in an uncertainty-driven learning environment when learning solar energy. A sequential mediation model was tested using data collected through validated measures assessing DSUN, epistemic curiosity, learning engagement, and learning achievement. Results revealed that while DSUN positively predicts learning achievement, this relationship is sequentially mediated by epistemic curiosity and learning engagement, with epistemic curiosity not serving as a significant mediator on its own. These findings underscore the importance of fostering both epistemic curiosity and engagement in science classroom activities when students encounter scientific uncertainty. 
    more » « less
    Free, publicly-accessible full text available June 10, 2026
  4. Free, publicly-accessible full text available April 3, 2026
  5. This article presents an innovative instructional approach that assists teachers in designing and implementing their science unit: The SUPeR (Student Uncertainty as Pedagogical Resources) approach. The SUPeR approach suggests four phases of student learning in scientific practices and posits that student uncertainties drive the trajectory of learning. By applying the SUPeR approach, teachers can foster student curiosity and ensure a student-centered science learning environment. A sixth-grade solar energy unit is described to show how a science unit can be designed and implemented using the SUPeR approach. The article elaborates on teacher guidance for applying the SUPeR approach, how student uncertainty is used to foster student curiosity and drive the learning trajectory, how student learning can be assessed from the SUPeR perspective, and how the SUPeR science unit aligns with the Next Generation Science Standards. 
    more » « less
    Free, publicly-accessible full text available January 2, 2026
  6. Free, publicly-accessible full text available June 8, 2026
  7. Abstract Grappling with uncertainty is an essential element of students' science learning and sense‐making processes, yet literature is limited regardinghowteachers can facilitate and use student scientific uncertainty as a pedagogical resource in their classrooms. Furthermore, progress on pedagogical practice depends on both the ability to notice one's perceptions and engage in opportunities to experience and reflect on new instructional approaches. To date, there are few professional development experiences explored in literature that explicitly aim to enhance teachers' awareness and pedagogical practice regarding the use and facilitation of student scientific uncertainty. As such, this qualitative study follows a group of 11 middle school science teachers before and after participating in a week‐long practice‐based professional development (P‐BPD) specifically designed to foster teachers' ability to use student uncertainty as a pedagogical resource. Interviews were conducted and analyzed prior to the P‐BPD, immediately after the P‐BPD, and the year following to measure shifts in perceptions over time. Additionally, classroom practice was observed both before and the year following the P‐BPD. Overall, we found that teachers' awareness of how to use student scientific uncertainty grew both in their expressed perceptions and in their observed classroom enactment. After engaging in the P‐BPD, many teachers expressed an enhanced awareness of the productive potential uncertainty can have, as well as increased understanding of potential sources and responses to student uncertainty. Additionally, in the post‐implementation observations, most of the teachers demonstrated more diverse use of uncertainty navigation strategies, intentionally raising, maintaining, and reducing scientific uncertainty more often. Teachers were observed using student ideas and uncertainties to drive the trajectory of their lessons more consistently. Notably, we report counterexamples for teachers who demonstrated less or no shifts in perceptions or practice. Furthermore, teachers explicitly identified experiences from the P‐BPD that fostered shifts in both their perceptions and practice. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  8. SPV Lab is developing an innovation model for school-based citizen science that supports a networked approach to community-centered knowledge building. Students and teachers on each SPV Lab campus interact through sharing of data and lab reports, using an online platform to facilitate collaboration at a distance. Students not only learn, but also contribute to scientific knowledge of a new area of engineering research, i.e., agrivoltaics, and to their communities, providing social value through clean energy and food production. Creation of an SPV Lab citizen science network that supports and sustains student and community learning in the area of sustainable food and energy. 10 teachers were trained in 2022 and 10 more teachers were trained in 2023. The reach of these two cohorts is vast as they impact more than 30 students per year each. Conservatively this translated into nearly 1000 K-12 students gaining knowledge in the area of agriPV. The inclusion of the youth population in sustainability science and initiatives is necessary with increasing climate concerns and the push for cleaner energy. Introducing the younger populations to collaborative learning experiences about sustainable energy production is the goal of the Sonoran Photovoltaic Lab (SPV Lab). SPV Lab is a network of students, teachers, scientists, engineers, and community partners encouraging equitable, lasting, sustainable energy transitions. This group is working to increase photovoltaic systems and educate the next generation of energy researchers, knowledgeable citizens, and students to ensure that underserved students in Arizona have equitable opportunities to participate in experiential learning programs to gain a newfound understanding of sustainable systems and their impact on the environment. Members of the SPV Lab work collaboratively to achieve active engineering citizen science for K-12 students in agrivoltaics engineering research. Agrivoltaics is a mixed energy source where solar panels are raised above agricultural crops or livestock. This creates a symbiotic relationship between the photovoltaic panels and the plants or animals that are located underneath. A cooling microbiome is generated beneath the solar panels that reduces the temperature in the area, thereby providing a more hospitable home for plants while increasing panel efficiency while collecting useful energy. Due to the complexity of agriPV systems, students benefit most from working side-by-side with other students, teachers, and experts to reach innovative solutions. This project represents the importance of intergenerational collaboration as the main contributors to this project included a college professor, a college student, and a high school student, all of whom contributed equally to the success of this project. Students participate in the construction of the garden beds, mapping activities, data collection, and more. Through the introduction and implementation of these activities, the students have become more invested in the success of their agrivoltaics system and are eager to support the project. The mapping activity has led to a newly cultivated understanding of These activities promoting the significance of engineering sustainable energy solutions, as well as local food systems and healthy community relationships. In a pre-college resource exchange session, SPV Lab teachers and engineering education researchers, and at least one student representative, will co-present to represent our SPV Lab network. The team will share knowledge, resources, practices, and protocols that support SPV Lab students to (a) conduct community ethnography to inform crop choices, (b) collect data in the garden using simple digital tools and time series monitoring systems, (c) analyze and interpret data from their own gardens, and (d) share lab reports and analyze data across multiple campuses. Attendees will learn how to design and build agriPV garden spaces, build a network of collaborators, and conduct citizen science in their own regions. 
    more » « less
  9. Lindgren, Robb; Asino, Tutaleni; Kyza, Eleni; Looi, CheeKit; Keifert, Teo; Suárez, Enrique (Ed.)
    Students need learning experiences that build capacities to agentively engage with issues challenging our world today. Teachers are often under-supported in endeavors to facilitate such learning experiences. Grounded in principles of consequential learning and expansive framing, this design-based research study sought to better understand the ways in which STEM teachers support students’ real work in the world as members of a school-based citizen science lab. Qualitative analysis of transcripts from teachers’ post-professional development and post-enactment interviews was used to characterize the ways teachers frame roles, goals, and community relationships intended to support students’ real work with real consequences. Findings illuminate ways teachers foster consequential STEM learning and suggest design principles for supporting teachers’ ongoing learning for and facilitation of real work with real consequences. 
    more » « less